Incoming Messages
Update: Attack Enemy City
Message Name:

UPD_ATTACK_CITY
Description:

Update to indicate success or failure of a unit you control (with ID of armyID) attacking city at location (x,y)
Message Arguments: 

@bool success

//set true if unit destroyed city, false if it died in the process
@int armyID

//ID of army that attacked the city

@int x_pos

//x-position of city that was attacked
@int y_pos

//y-position of city that was attacked
Triggered By: 

ACT_ATTACK_CITY

State update:

If (success)

Remove enemy city from enemy_city_locations array

num_enemy_cities--


Call: EnemyCityDestroyed observation model
Update: Attack Enemy Army

Message Name:

UPD_ATTACK_UNIT
Description:

Update to indicate success or failure of a unit you control (with ID of armyID ) attacking an enemy unit at location (x,y)
Message Arguments: 

@bool success

//set true if your unit won, false if it died in the process

@int armyID

//ID of army that attacked the city

@int x_pos

//x-position of unit that you attacked with
@int y_pos

//y-position of unit that you attacked with
Note: this does not report the x-y position of the unit that was destroyed
Triggered By: 

ACT_ATTACK_UNIT
State update:

If (success)


Call: EnemyUnitDestroyed observation model
Update: Settled City ID

Message Name:

UPD_SETTLED_CITY_ID

Description:

Update to indicate the ID of the city built by the settler and location passed in by the ACT_SETTLE message
Message Arguments: 

@int cityID

//ID of the newly built city

@int x_pos

//x position of city built

@int y_pos

//y position of city built

Triggered By: 

ACT_SETTLE

State update:

Add city to my_city_locations array

num_my_cities++

Call: CitySettled observation model
Update: New Unit Finished Building
Message Name:

NEW_UNIT_COMPLETED
Description:

Update to indicate information about a new unit that has finished building
Message Arguments: 

@int armyID


//ID of army unit being produced

@int x_pos


//x-position of the new unit

@int y_pos


//y-position of the new unit

@int type 


//the integer representation of the type of unit made

Triggered By: 

-a new unit being created
State update:
Add this new unit to my_army_locations array
Call: NewUnitBuilding observation model
Update: Query Unexplored Map

Message Name:

UPD_UNEXPLORED_MAP
Description:

Update to indicate an unexplored tile near one of your units
Message Arguments: 

@bool success

//set true if there is an unexplored tile around that unit

@int armyID

//ID of army that is performing the search

@int x_pos

//x-position of the tile returned

@int y_pos

//y-position of the tile returned

Triggered By: 

QU_UNEXPLORED_MAP

State update:

Call: UnexploredTile observation model
Update: Query Enemy Unit

Message Name:

UPD_ENEMY_UNIT

Description:

Update to indicate the existence of enemy units in visual range of a specific army unit you control
Message Arguments: 

@bool success

//set true if there are any enemy units in visual range of your unit
@Array[] int positions
//array of x and y positions (respectively) for units found
Triggered By: 

QU_ENEMY_UNIT
-also triggered at the start of every turn if there are enemy units nearby your units
State update:
if (success)

Call: NearEnemyUnit observation model
Update: Query Enemy City

Message Name:

UPD_ENEMY_CITY

Description:

Update to indicate the existence of enemy cities in visual range of a specific army unit you control
Message Arguments: 

@bool success

//set true if there are any enemy cities in visual range of your unit
@Array[] int positions
//array of x and y positions (respectively) for cities found
Triggered By: 

QU_ENEMY_CITY
-also triggered at the start of every turn if there are enemy cities nearby
State update:

if (success)

Add these locations to enemy_city_locations array

num_enemy_cities = num_enemy_cities + length of array
Call: NearEnemyCity observation model

Update: Army X,Y position 
Message Name:

UPD_ARMY_XY

Description:

Update to indicate an army’s x,y location

Message Arguments: 

@int armyID

//ID of army unit that has been moved
@int x_pos
//x position of the unit

@int y_pos
//y position of the unit
@int type 

//the integer representation of the type of unit moved
Triggered By: 

Start of your turn
State update:

Set army x and y position in my_army_locations array

Call: UpdatePosition observation model
Update: Buildable Tile

Message Name:

UPD_CITY_BUILDABLE

Description:

Update to indicate whether a city can be built on a certain tile

Message Arguments: 

@bool success
//set true if there is an a city can be built on the x,y position passed in from QU_CITY_BUILDABLE message

@int armyID
//ID of the unit that will build the city

@int x_pos
//x-location where city will be built

@int y_pos
//y-location where city will be built

Triggered By: 

QU_CITY_BUILDABLE

State update:

Call: CityBuildable observation model
If (success) 
Call: ACT_SETTLE outgoing message to build the city there
Update: Moveable Tile

Message Name:

UPD_MOVEABLE

Description:

Update to indicate whether a unit can be moved to a certain tile

Message Arguments: 

@bool success
//set true if the unit in question can move to the tile passed in from the QU_MOVEABLE message

@int armyID
//ID of the unit that will move

@int x_pos
//x-location where the unit is
@int y_pos
//y-location where the unit is
@int x_dest
//x-location the unit will move to
@int y_dest
//y-location the unit will move to
Triggered By: 

QU_MOVEABLE

State update:

Call: UnitMoveable observation model
If (success)

Call: ACT_MOVE outgoing message to move the unit there
Update: Unit Buildable

Message Name:

UPD_UNIT_BUILDABLE

Description:

Update to indicate whether a unit can be built (ie: you are far enough in the tech tree to build it)

Message Arguments: 

@bool success
//set true if the unit type in question can be built

@int cityID
//city unit will be built in

@int unit_type
//type of unit to build

Triggered By: 

QU_UNIT_BUILDABLE
State update:

Call: UnitBuildable observation model
If (success)

Call: ACT_PRODUCE outgoing message to make the unit

Update: City Improvement Buildable

Message Name:

UPD_IMPROVEMENT_BUILDABLE

Description:

Update to indicate whether a city improvement can be built (ie: you are far enough in the tech tree to build it)

Message Arguments: 

@bool success
//set true if the improvement type in question can be built

@int cityID
//ID of city to build the improvement

@int improvement_type
//type of improvement to build

Triggered By: 

QU_IMPROVEMENT_BUILDABLE

State update:

Call: ImprovementBuildable observation model
If (success)

Call: ACT_IMPROVE outgoing message
Update: Unit Garrisoning
Message Name:

UPD_GARRISON
Description:

Update to indicate whether a given unit can garrison its current location
Message Arguments: 

@bool success
//set true if the unit is garrisoning a city

@int armyID
//ID of the unit that is now garrisoning

Triggered By: 

QU_GARRISON
State update:

-change garrisoning Boolean variable for armyID in my_army_locations array to true
Call: Garrisoning observation model
Update: Unit Stopped Garrisoning
Message Name:

UPD_UNGARRISON

Description:

Update to indicate whether a given unit can stop garrisoning its current location
Message Arguments: 

@bool success
//set true if the unit could stop garrisoning
@int armyID
//ID of the unit that is now ungarrisoned
Triggered By: 

QU_UNGARRISON
State update:

-change garrisoning Boolean variable for armyID in my_army_locations array to false
Call: StoppedGarrisoning observation model

Update: City Attackable
Message Name:

UPD_CITY_ATTACKABLE

Description:

Update to indicate whether a given unit can attack a given city
Message Arguments: 

@bool success
//set true if you can attack the city
@int armyID
//ID of the unit that will attack
@int x_pos
//x-position of city that will be attacked
@int y_pos
//y-position of city that will be attacked
Triggered By: 

QU_ATTACK_CITY

State update:

Call: CityAttackable observation model
Update: Unit Attackable
Message Name:

UPD_UNIT_ATTACKABLE

Description:

Update to indicate whether a given unit you control can attack an enemy unit
Message Arguments: 

@bool success
//set true if you can attack the enemy unit
@int armyID
//ID of the unit that will attack
@int x_pos
//x-position of army that you will attack with
@int y_pos
//y-position of army that you will attack with 

Triggered By: 

QU_ATTACK_UNIT

State update:

Call: UnitAttackable observation model
City Destroyed
Message Name:

DESTROYED_CITY

Description:

Update to indicate that one of your cities has been destroyed
Message Arguments: 

@int cityID
//ID of city destroyed
Triggered By: 

-one of your cities being destroyed
State update:

Remove enemy city from enemy_city_locations array

num_enemy_cities--

Call: MyCityDestroyed observation model
Unit Destroyed
Message Name:

DESTROYED_UNIT

Description:

Update to indicate that one of your units has been destroyed
Message Arguments: 

@int armyID
//ID of army destroyed
Triggered By: 

-one of your units being destroyed
State update:

Remove unit with ID of armyID from my_army_locations array
num_my_armies--

Call: MyUnitDestroyed observation model
Game Turn passed
Message Name:

GAME_TICK

Description:

Update to indicate the end of any turn
Message Arguments: 

none
Triggered By: 

-Any turn ending

State update:

curr_turn++

Call: TurnOver observation model
Your Turn begins
Message Name:

GAME_MYTURN

Description:

Update to indicate that it is now your turn
Message Arguments: 

none
Triggered By: 

-Enemy turns ending

State update:

Call: MyTurn observation model
Player ID
Message Name:

GAME_MY_ID

Description:

Update to tell you what your player ID is
Message Arguments: 

@int playerID
//your player ID

Triggered By: 

-game starting

State update:

my_player_id = playerID

Call: MyID observation model
Number of Players
Message Name:

GAME_NUM_PLAYERS

Description:

Update to tell you how many players are in the current game
Message Arguments: 

@int num_players
//total number of players

Triggered By: 

1) game starting

2) enemy player has been defeated

State update:

num_enemy_players = num_players – 1;

Call: NumPlayers observation model
Note: Although it is supported in TIELT, CTP2 does not currently send this message
Program Start
Message Name:

CTP2_START

Description:

Message to indicate start of CTP2 program
Message Arguments: 

none
Triggered By: 

- program starting

State update:

Call: Connected observation model
Call: HELLO outgoing message
Game Start
Message Name:

GAME_START
Description:

Message to indicate start of game
Message Arguments: 

none
Triggered By: 

- game starting

State update:

Call: GameStarted observation model
Game Lost
Message Name:

GAME_LOSE

Description:

Update to indicate a loss
Message Arguments: 

none
Triggered By: 

-losing the game

State update:

Call: Lose observation model
Game Won
Message Name:

GAME_WIN

Description:

Update to indicate a win
Message Arguments: 

none
Triggered By: 

-winning the game

State update:

Call: Win observation model
Game Finished
Message Name:

GAME_DONE
Description:

Message to indicate completion of game
Message Arguments: 

none
Triggered By: 

-game complete
State update:

Call: GameOver observation model
Program End

Message Name:

CTP2_END

Description:

Message to indicate end of CTP2 program
Message Arguments: 

none
Triggered By: 

- program ending

State update:

Call: Disconnected observation model
Game Loaded

Message Name:

UPD_LOAD

Description:

Indicates success or failure of loading a game
Message Arguments: 

@bool success
//set true if game was loaded, false otherwise

Triggered By: 

GAME_LOAD

State update:

Call: GameLoaded observation model

Game Saved
Message Name:

UPD_SAVE

Description:

Indicates success or failure of saving a game
Message Arguments: 

@bool success
//set true if game was saved, false otherwise

Triggered By: 

GAME_SAVE

State update:

Call: GameSaved observation model

